
Spotify Time Series Analysis

Wenxuan Zhang

12/10/2020

1.Abstract
In this project, we will analyze the average energy index of song tracks on Spotify from 1921-2020. We explore
the energy characteristic of songs over 100 years and apply time series techniques such as data transformation,
model identification, diagnostic checking and data forecasting to analyze the the trend of the energy of song
tracks. We discover that the song tracks are getting increasingly energetic over time in general and derive a
time series model that allow us to forecast the average energy index in the next following years.

2. Introduction
In this project, we analyze the average energy index of song tracks on Spotify from 1921-2020. This dataset is
derived from kaggle public dataset. The contributor of this dataset collects the data from Spotify API, where
the level of energy of each song track is rated by the algorithm developed by Spotify developers. Energy is a
measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic
tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low
on the scale.

We are interested in analyzing the trend of the level of energy of songs over a large period of time. The
analysis is helpful for understanding how music has developed and shaped in the last 100 years. We use
various vtime series techniques to detect the trend and seasonality, including graphing histogram, ACF and
PACF, as well as spectral analysis. We also performe data transformation, model estimation, and residual
analysis for building forecasting model.

Eventually, we fit the derived model into original dataset to make predictions on the average energy index for
incoming years. In general, we are albe to predict the trend of the song track energy and obtain estimates
close to the true value.

3. Time Series Analysis
3.1 Exploratory Data Analysis
We begin our analysis by plotting the time series and examining the main features of the graph. We plot the
average energy index of song tracks over 1921-2020 which gives us 100 observations.
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We split our dataset to a trainning dataset with 95 observations and a validation dataset with last 5
observations. Examing the graph from the training set, we see a clear positive linear trend: the average
energy index increases over the years. We do not observe any obvious seasonality in the graph. However, the
first 30 observation seems to have a more constant mean and smaller variance comparing to the following
data.
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Then, we check the histogram and ACF graph to detect the need for any transformation or differencing. The
histogram of the training data is somewhat not symmetric, while the ACF remain large at different lags.
Therefore, we decide to use box-cox transformation to further stablize the variance and remove the trend of
the data.

The lambda value we derive from the Box-Cox transformation is 1.27 which is very close to 1, suggesting us
keep using the original data.
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The histogram of the original and transformed data also do not exhibit much difference, and the variance of
the original and transformed data is 0.0175 and 0.027 respectively. Since transformation does not lower the
variance significantly and 1 is within the confidence interval of lambda, we decide not to transform and use
the original data.
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BC Transformed Histogram

F
re

qu
en

cy

−0.7 −0.6 −0.5 −0.4 −0.3

0
5

10
15

20

Original Histogram

F
re

qu
en

cy

0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

By our previous observation and the decomposition of the data, there is a positive linear trend in our original
time series data. To remove the trend, we difference the data and compare the variance before and after.
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The data differenced at lag 1 yield a variance of 0.00087, which is significantly lower than that of the original
data. We plot the de-trended data and the time series exhibit no trend and seasonality.
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We continoue to check the ACF and histogram of the data. Comparing the original and differenced ACF
plot, the ACF of the detrended data decays corresponds to a stationary process. The histogram of the data
after differenced at lag 1 also looks symmetric and Gaussian. Therefore, it is appropraite to use our original
data differenced at lag 1 to proceed for further model identification.
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3.2 Model Identification
We plot the ACF and PACF of our modified data. We find ACF is outside of the confidence interval at lag
1,3,6 and PACF is outside of the confidence interval at lag 1 and 2. Therefore, we suggest ARIMA model
with p = 1, 3, 6 and q = 1, 2 to be our candidate models.
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3.3 Model Estimation
By computing the AICc value of each candidate models, we get a table of models with each p and q
respectively:

## p q AICc
## [1,] 1 1 -405.0506
## [2,] 3 1 -406.3351
## [3,] 6 1 -409.7722

## p q AICc
## [1,] 1 2 -403.6527
## [2,] 3 2 -407.8522
## [3,] 6 2 -410.0100

From the table above, we choose ARIMA(6, 1, 1) and ARIMA(6, 1, 2) for further validation, since they have
the lowest AICc value. We also check for ARIMA(3, 1, 2) as it has the lowest AICc value among the rest of
the candidates and has less parameters.

First we take a look at ARIMA(3, 1, 2), we get the coefficients for each parameters after fitting our data into
ARIMA(3, 1, 2). The zero is within the confidence interval of the coefficient of AR3, we fix it to be 0 and try
the model again. In this way, we get the lowest AICc of ARIMA(3, 1, 2) to be -409.8522.

##
## Call:
## arima(x = d1, order = c(3, 0, 2), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 intercept
## -0.6213 -0.7538 -0.0012 0.2696 0.5764 0.0044
## s.e. 0.3851 0.2840 0.1982 0.3663 0.1650 0.0020
##
## sigma^2 estimated as 0.0006477: log likelihood = 211.41, aic = -410.82

##
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## Call:
## arima(x = d1, order = c(3, 0, 2), transform.pars = FALSE, fixed = c(NA, NA,
## 0, NA, NA, NA), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ma1 ma2 intercept
## -0.6193 -0.7522 0 0.2678 0.5761 0.0044
## s.e. 0.1981 0.1137 0 0.2323 0.1487 0.0020
##
## sigma^2 estimated as 0.0006476: log likelihood = 211.41, aic = -412.82

## [1] -409.8522

Then, we perform the same analysis to the model ARIMA(6, 1, 1) and ARIMA(6, 1, 2). The lowest AICc
we get for ARIMA(6, 1, 1) is -413.0761; and that of ARIMA(6, 1, 2) is -413.1787. Comparing the results
of the three candidate models, the lowest AICc value of ARIMA(6, 1, 1) and ARIMA(6, 1, 2), after fixing
some coefficient to be zero, are still very close. However, ARIMA(3, 1, 2) does not give a lower or close AICc
over ARIMA(6, 1, 1) and ARIMA(6, 1, 2). Therefore, we proceed ARIMA(6, 1, 1) and ARIMA(6, 1, 2) for
further examination.

##
## Call:
## arima(x = d1, order = c(6, 0, 1), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ar6 ma1 intercept
## 0.2433 0.0664 0.1773 -0.1359 -0.0814 0.3621 -0.6102 0.0039
## s.e. 0.1730 0.1137 0.1042 0.1140 0.1113 0.1075 0.1604 0.0026
##
## sigma^2 estimated as 0.0005996: log likelihood = 214.73, aic = -413.47

##
## Call:
## arima(x = d1, order = c(6, 0, 1), transform.pars = FALSE, fixed = c(NA, 0, NA,
## NA, 0, NA, NA, NA), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ar6 ma1 intercept
## 0.2314 0 0.1806 -0.1438 0 0.3437 -0.5834 0.0038
## s.e. 0.1728 0 0.1057 0.1120 0 0.1058 0.1467 0.0026
##
## sigma^2 estimated as 0.0006042: log likelihood = 214.39, aic = -416.77

## [1] -413.0761

##
## Call:
## arima(x = d1, order = c(6, 0, 2), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2
## 0.5547 -0.1815 0.1031 -0.2577 -0.0066 0.3707 -0.9720 0.4196
## s.e. 0.2594 0.1637 0.1185 0.1409 0.1370 0.1140 0.2783 0.1988
## intercept
## 0.0038
## s.e. 0.0026
##
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## sigma^2 estimated as 0.00058: log likelihood = 216.08, aic = -414.15

##
## Call:
## arima(x = d1, order = c(6, 0, 2), transform.pars = FALSE, fixed = c(NA, NA,
## 0, NA, 0, NA, NA, NA, NA), method = "ML")
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2 intercept
## 0.5342 -0.1713 0 -0.2227 0 0.3637 -0.9717 0.4637 0.0038
## s.e. 0.2633 0.1646 0 0.0980 0 0.0958 0.2999 0.1533 0.0024
##
## sigma^2 estimated as 0.0005848: log likelihood = 215.66, aic = -417.32

## [1] -413.1787

At this point, we conclude our candidate model A to be ARIMA(6,1,1):

(1 + 0.2314B + 0.1806B3 − 0.1438B4 + 0.3437B6)(1 −B)Xt = (1 − 0.6102B)Zt

and candidate model B to be ARIMA(6,1,2):

(1 + 0.5342B − 0.1713B2 − 0.2227B4 + 0.3637B6)(1 −B)Xt = (1 − 0.9717B + 0.4637B2)Zt

.

3.4 Model Diagnostic
Next step, we check the stationarity and invertibility of both models. We plot the roots of polynomials of
both the MA and AR part of the model A. All the roots are outside of the unit circle, which means the model
is stationary and invertible. We plot the same graph for model B. The result shows that model B is also
stationary and invertible.
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We then and perform more diagnostic checking on the residuals of model A and B. First we look at model
A. There is no trend, no seasonality or visible variance change in its residual plot. The histogram is almost
Gaussian and the normal Q-Q plot looks good except for 2 data points at the tail. We verify its normality by
using Shapiro-Wilk test. And it does pass the test with p-value 0.03914 < 0.05 at 95% confidence level.

We also perform Box-Pierce test, Box-jung test, and Mcleod-Li test to detect any linear and non-linear
correlation between residuals. The model passed three test with p-value: 0.1242, 0.09391, and 0.4296
respectively.
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Moreover, we check that all the ACF and PCF of the residuals of model A are within the confidence interval
and can be counted as zeros. Fitting residuals to AR(0), we get σ̂z

2 = 0.0006107 which means the residuals
resemble WN . Even though the other aspect of model A are have good behavior, it does not pass the test
for normality of residuals. Thus, model A is not ideal for forecasting.
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PACF of Residuals; Model A

##
## Call:
## ar(x = res1, aic = TRUE, order.max = NULL, method = c("yule-walker"))
##
##
## Order selected 0 sigma^2 estimated as 0.0006107

We then examine the diagnostic checking results for model B. The plot of residuals for model B does not has
trend, seasonality, or sharp change of variance neither. The histogram and normal Q-Q plot looks similar to
those of model A, with slightly better shape.

Checking the test results formodel B, it passes Sharpiro-Wilk test with p-value 0.06824, better than model A
does. It also passes other three test with p-value 0.3277, 0.2797, 0.3383 for Box-Pierce test, Box-jung test,
and Mcleod-Li test respectively as they are all greater than 0.05.
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Residuals; Model B
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##
## Shapiro-Wilk normality test
##
## data: res2
## W = 0.97499, p-value = 0.06824

##
## Box-Pierce test
##
## data: res2
## X-squared = 3.4471, df = 3, p-value = 0.3277
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##
## Box-Ljung test
##
## data: res2
## X-squared = 3.8362, df = 3, p-value = 0.2797

##
## Box-Ljung test
##
## data: res2^2
## X-squared = 11.251, df = 10, p-value = 0.3383

The ACF and PACF of residuals in model B also fall in the confidence interval which can be treated as zero.
And the residuals resember WN with σ̂z

2 = 0.0005911.
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PACF of Residuals; Model B

##
## Call:
## ar(x = res2, aic = TRUE, order.max = NULL, method = c("yule-walker"))
##
##
## Order selected 0 sigma^2 estimated as 0.0005911

To summarize, model B perform better than model A. Model B has a slightly lower AICc than model A,
but the difference is small (0.1); while Model B posses diagnostic tests with a bit higher p-value over all and
possesses somewhat better shape in the residual histogram adn normal Q-Q plot. And most importantly,
model A does not pass Sharpiro-Wilk test for normality, while model B passes all diagnostic test. Therefore,
it is reasonable to determine model A ARIMA(6,1,2):

(1 + 0.5342B − 0.1713B2 − 0.2227B4 + 0.3637B6)(1 −B)Xt = (1 − 0.9717B + 0.4637B2)Zt

for data forecasting.
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4. Spectral Analysis
We conclude our data is free of seasonality by examing original data and ACF of differenced data. Before we
make final data forecasting, we check the seasonality again with spectral analysis in case there is undetected
seasonality within the data.

We plot the periodogram for the data and residuals of our model. and does not detect any frequencies. There
seems to have spikes at 0.01 and 0.03, however, the corresponding period indicated by this frequency would
be 100 and 33 years, which is not reasonable since we only have data for past 100 years. Therefore, this does
not provides us extra insight on the seasonality of the data. The periodogram of the residuals does not have
a dominant frequency neither.
require(TSA)
TSA::periodogram(df.train)
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We also apply Fisher’s test on the residuals for the presence of hidden periodicities with unspecified frequency.
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The result 0.9606491 passes the test, which indicates that no periodicities detected. We then use Komolgorov-
Smirnov test for cumulative periodogram of residual.The following graph shows that our residuals passed the
test since our test statistics are within the boundaries. These indicate our residual resemble Gaussian white
noise resulted from a well fitted model.

## [1] 0.9606491

cpgram(res2, main="")
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5. Data Forecasting
Based on the model we drived above, we fit our model ARIMA(6,1,2):

(1 + 0.5342B − 0.1713B2 − 0.2227B4 + 0.3637B6)(1 −B)Xt = (1 − 0.9717B + 0.4637B2)Zt

with the training data with 95 observations and make prediction on the next 5 observations. From the
forecasting graph, we are able to see that our model correctly predict the negative trend of the engergy index
and the prediction is relatively close to the true value. However, our confidence interval fail to catch all the
future values.
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There are one or two out of the total five data points are outside the interval. The inaccuracy here might be
due to the fisrt 20 - 30 observations, which exhibit relatively stationary trend comparing to the following
positive linear trend. Those data are conclude from the song track from roughly 1921-1950, where the world
is undergoing an unsual time due to the instability of society, such as wars, revolutions. . . The amount of
song track data for those period of time we have is also limited comparing to the data for later years.

To fit a model that could make better prediction on the future value, we might consider exclude those data,
however, since we only have 100 observations in total in this dataset, it is not appropriate to do so. Overall,
our time series model ARIMA(6,1,2):

(1 + 0.5342B − 0.1713B2 − 0.2227B4 + 0.3637B6)(1 −B)Xt = (1 − 0.9717B + 0.4637B2)Zt

are able to give approximate forecasting the engergy index for future song tracks.

18



6. Conclusion
In summary, we examine the trend and seasonality and apply transformation and differencing method to
the original data. We identify the candidate models by with ACF, PACF, and spectral analysis. We also
perform diagnostic checking and determine the final forecasting model. With the derived model. We are able
to predict the general trend and approximate value of the energy level of song tracks in the future.
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